16 The Side-Angle-Side Axiom

1. (a) Let $\overline{M N}$ and $\overline{P Q}$ denote two given line segments. Explain what it mean that $\overline{M N} \cong \overline{P Q}$.
(b) Let $\measuredangle A B C$ and $\measuredangle D E F$ denote given angles. Explain, what it mean that $\measuredangle A B C \cong \measuredangle D E F$.

Intuitively, two figures are congruent if one can be "picked up and laid down exactly on the other" so that the two coincide.

Convention. In $\triangle A B C$, if there is no confusion, we will denote $\measuredangle C A B$ by $\measuredangle C, \measuredangle A B C$ by $\measuredangle B$ and $\measuredangle B C A$ by $\measuredangle C$.

Definition (congruence, congruent triangles)

Let $\triangle A B C$ and $\triangle D E F$ be two triangles in a protractor geometry and let $f:\{A, B, C\} \rightarrow\{D, E, F\}$ be a bijection between the vertices of the triangles. f is a congruence iff

$$
\begin{array}{lrc}
\overline{A B}=\overline{f(A) f(B)}, & \overline{B C}=\overline{f(B) f(C)}, & \overline{C A}=\overline{f(C) f(A)}, \\
\measuredangle A \cong \measuredangle f(A), & \measuredangle B \cong \measuredangle f(B) \quad \text { and } & \measuredangle C \cong \measuredangle f(C) .
\end{array}
$$

Two triangles, $\triangle A B C$ and $\triangle D E F$, are congruent if there is a congruence $f:\{A, B, C\} \rightarrow\{D, E, F\}$. If the congruence is given by $f(A)=D, f(B)=E$, and $f(C)=F$, then we write $\triangle A B C \cong \triangle D E F$.
2. Prove that congruence is an equivalence relation on the set of all triangles in a protractor geometry.

The fundamental question of this section is: How much do we need to know about a triangle so that it is determined up to congruence?

Suppose that we are given $\triangle A B C$ and a ray $\overrightarrow{E X}$ which lies on the edge of a half plane H_{1}. Then we can construct the following by the Segment Construction Theorem and the Angle Construction Theorem
(a) A unique point $D \in \overrightarrow{E X}$ with $\overline{B A} \cong \overline{E D}$;
(b) A unique ray $\overrightarrow{E Y}$ with $Y \in H_{1}$ and
$\measuredangle A B C \cong \measuredangle X E Y$;
(c) A unique point $F \in \overrightarrow{E Y}$ with $\overline{B C} \cong \overline{E F}$.

Is $\triangle A B C \cong \triangle D E F$? Intuitively it should be (and it will be if SAS is satisfied). However, since we know nothing about the rulers for $\overleftrightarrow{D F}$ and $\overleftrightarrow{A C}$, we have no way of showing that $\overline{A C} \cong \overline{D F}$. In fact next example will show that $\overline{A C}$ need not be congruent to $\overline{D F}$.
3. In the Taxicab Plane let $A(1,1), B(0,0)$, $C(-1,1), E(0,0), X(3,0)$, and let H_{1} be the half plane above the x-axis. Carry out the construction outlined above and check to see whether or not $\triangle A B C$ is congruent to $\triangle D E F$.
[Example 6.1.1, page 126]

Definition (Side-Angle-Side Axiom (SAS))

A protractor geometry satisfies the Side-Angle-Side Axiom (SAS) if whenever $\triangle A B C$ and $\triangle D E F$ are two triangles with $\overline{A B} \cong \overline{D E}, \measuredangle B \cong \measuredangle E$ and $\overline{B C} \cong \overline{E F}$, then $\triangle A B C \cong \triangle D E F$.

Definition (neutral or absolute geometry)

A neutral geometry (or absolute geometry) is a protractor geometry which satisfies SAS.

Proposition (Euclidean Law of Cosines). Let $c(\theta)$ be the cosine function as developed in Section 15. Then for any $\triangle P Q R$ in the Euclidean Plane $d_{E}(P, R)^{2}=d_{E}(P, Q)^{2}+d_{E}(Q, R)^{2}-$ $-2 d_{E}(P, Q) d_{E}(Q, R) c\left(m_{E}(\measuredangle P Q R)\right)$.
Proposition. The Euclidean Plane \mathcal{E} satisfies SAS.
4. Prove the above Proposition.
[Proposition 6.1.3, page 128]
Proposition. The Poincaré Plane \mathbb{H} is a neutral geometry.

Definition (isosceles triangle, scalene triangle, equilateral triangle, base angles) A triangle in a protractor geometry is isosceles if (at least) two sides are congruent. Otherwise, the triangle is scalene. The triangle is equilateral if all three sides are congruent. If $\triangle A B C$ is isosceles with $\overline{A B} \cong \overline{B C}$, then the base angles of $\triangle A B C$ are $\measuredangle A$ and $\measuredangle C$.

Our first application of SAS is the following theorem on isosceles triangles. The Latin name (literally "the bridge of asses") refers to the complicated figure Euclid used in his proof,
which looked like a bridge, and to the fact that only someone as dull as an ass would fail to understand it.

Theorem. (Pons Asinorum). In a neutral geometry, the base angles of an isosceles triangle are congruent.
5. Prove the above Theorem.
[Theorem 6.1.5, page 129]
6. Let $\triangle A B C$ be an isosceles triangle in a neutral geometry with $\overline{A B} \cong \overline{C A}$. Let M be the midpoint of $\overline{B C}$. Prove that $\overleftrightarrow{A M} \perp \overleftrightarrow{B C}$.
7. Prove that in a neutral geometry every equilateral triangle is equiangular; that is, all its angles are congruent.
8. Show that if $\triangle A B C$ is a triangle in the

Euclidean Plane which has a right angle at C then $(A B)^{2}=(A C)^{2}+(B C)^{2}$.
9. Let $\triangle A B C$ be a triangle in the Euclidean Plane with $\measuredangle C$ a right angle. If $m_{E}(\measuredangle B)=\theta$ prove that $c(\theta)=B C / A B$ and $s(\theta)=A C / A B$.
10. Let $\square A B C D$ be a quadrilateral in a neutral geometry with $\overline{C D} \cong \overline{C B}$. If $\overrightarrow{C A}$ is the bisector of $\angle D C B$ prove that $\overline{A B} \cong \overline{A D}$.
11. Let $\square A B C D$ be a quadrilateral in a neutral geometry and assume that there is a point $M \in \overline{B D} \cap \overline{A C}$. If M is the midpoint of both $\overline{B D}$ and $\overline{A C}$ prove that $\overline{A B} \cong \overline{C D}$.
12. Suppose there are points A, B, C, D, E in a neutral geometry with $A-D-B$ and $A-E-C$ and A, B, C not collinear. If $\overline{A D} \cong \overline{A E}$ and $\overline{D B} \cong \overline{E C}$ prove that $\measuredangle E B C \cong \measuredangle D C B$.

17 Basic Triangle Congruence Theorems

Definition. (Angle-Side-Angle Axiom (ASA)) A protractor geometry satisfies the Angle-Side-Angle Axiom (ASA) if whenever $\triangle A B C$ and $\triangle D E F$ are two triangles with $\measuredangle A \cong \measuredangle D, \overline{A B} \cong \overline{D E}$, and $\measuredangle B \cong \measuredangle E$, then $\triangle A B C \cong \triangle D E F$.
Theorem. A neutral geometry satisfies ASA.

1. Prove the above Theorem.
[Theorem 6.2.1, page 131]
Theorem. (Converse of Pons Asinorum). In a neutral geometry, given $\triangle A B C$ with $\measuredangle A \cong \measuredangle C$, then $\overline{A B} \cong \overline{C B}$ and the triangle is isosceles.
2. Prove the above Theorem.
3. Prove that in a neutral geometry every equiangular triangle is also equilateral.

Definition. (Side-Side-Side Axiom (SSS)) A protractor geometry satisfies the Side-SideSide Axiom (SSS) if whenever $\triangle A B C$ and $\triangle D E F$ are two triangles with $\overline{A B} \cong \overline{D E}, \overline{B C} \cong$ $\overline{E F}$, and $\overline{C A} \cong \overline{F D}$, then $\triangle A B C \cong \triangle D E F$.

Theorem. A neutral geometry satisfies SSS.
4. Prove the above Theorem.
[Theorem 6.2.3, page 132]
In one of earlier sections we showed that PSA and PP are equivalent axioms: if a metric geometry satisfies one of them then it also
satisfies the other. A similar situation is true for SAS and ASA. We already know that SAS implies ASA. The next theorem gives the converse.
Theorem. If a protractor geometry satisfies ASA then it also satisfies SAS and is thus a neutral geometry.
5. Prove the above Theorem.

Theorem. In a neutral geometry, given a line ℓ and a point $B \notin \ell$, then there exists at least one line through B perpendicular to ℓ.
6. Prove the above Theorem.
[Theorem 6.2.5, page 133]
7. In a neutral geometry, given $\triangle A B C$ with $\overline{A B} \cong \overline{B C}, A-D-E-C$, and $\measuredangle A B D \cong \measuredangle C B E$, prove that $\overline{D B} \cong \overline{E B}$.
8. In a neutral geometry, given $\triangle A B C$ with $A-D-E-C, \overline{A D} \cong \overline{E C}$, and $\measuredangle C A B \cong \measuredangle A C B$, prove that $\measuredangle A B E \cong \measuredangle C B D$.
9. In a neutral geometry, given $\square A B C D$ with $\overline{A B} \cong \overline{C D}$ and $\overline{A D} \cong \overline{B C}$, prove that $\measuredangle A \cong \measuredangle C$ and $\measuredangle B \cong \measuredangle D$.
10. In a neutral geometry, given $\triangle A B C$ with $A-D-B, A-E-C, \measuredangle A B E \cong \measuredangle A C D$, $\measuredangle B D C \cong \measuredangle B E C$, and $\overline{B E} \cong \overline{C D}$, prove that $\triangle A B C$ is isosceles.

